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1 Hardness of Approximation

1.1 Constraint statisfaction problems

Definition 1.1. A constraint satisfaction problem (CSP) over domain Ω is defined
by a finite set of predicates Ψ where each ψ ∈ Psi is some constraint ψ : Ωr → {0, 1}. The
arity of a CSP is the maximal arity r of a predicate in Ψ.

Example 1.1. Max-3SAT, Max-Cut, Max-3LIN, and Max-3Coloring are al CSPs.

All these problems are NP-hard.

Example 1.2. In Max-3SAT, Ω = {T, F}, and a predicate could be something like
ψ(v1, v2, v3) = v1 ∧ v2 ∧ v3 or ψ(v1, v2, v3) = v1 ∧ v2 ∧ v3. The arity is 3.

Definition 1.2. An instance P for MAxCSP(Ψ) over variable set V is a list of tuples:
(scope, predicate) C = (s, ψ), where ψ ∈ Ψ and s = (v1, . . . , vr) is a typle of variables in
V .

Definition 1.3. An assignment for an instance P is a labeling F : V → Ω. F satisfies
a constraint (s, ψ) if ψ(F (s)) = 1, where F (s) = (F (v1), . . . , F (vr)).

Definition 1.4. The value pf F on P , is the fraction of constraints in P satisfied by F .
That is,

Valp(F ) = E(S,ψ)∼P [ψ(F (S))].

The optimal value is
OPT(P ) := max

F
ValP (F ).

Last time, we discussed string testers. The main insight is that CSPs are the same as
string testers. Here is a dictionary between CSPs and string testing.
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CSP instance P string tester

Assignment F : [n]→ Ω ω ∈ Ωn

Value of F P(tester accepts ω)

Ψ predicates you apply in the string tester

number of constraints 2# random bits

Example 1.3. Take Max-3SAT, for example. We think of the string as an assignment to
all the variables. Our queries ask for the value of 3 bits in the string, and the predicates
are the predicates of the DNF, things like x1 ∧ x2 ∧ x3.

Definition 1.5. An (α, β)-approximation algorithm for MaxxCSP(Ψ) is an algorithm
that on instances where whose best assignment has value ≥ β, the algorithm is guaranteed
to output and assignment with value ≥ α.1

Example 1.4. (1, 1) approximating Max-Cut is easy because this is the case where the
graph is bipartite.

Example 1.5. (1/2, 0.51) approximating Max-Cut is easy because if we randomly cut each
edge with probability 1/2, we will cut half the edges on average.

Example 1.6. (1, 1)-approximating MaxSAT is NP-hard because if we can find a satisfying
assignment for any formula which can be satisfied, then we can solve 3SAT.

Example 1.7. (1, 1)-approximating MaxColoring is NP-hard because solving this problem
would allow us to solve 3Coloring.

Example 1.8. (1, 1)-approximating Max-3LIN is easy because because we can just use
Gaussian elimination to see whether a system of linear equations has a solution.

However, the following theorem tells us that Gaussian elimination is not robust for
solving this CSP.

Theorem 1.1 (H̊astad). (0.51, 0.99)-approximating Max-3LIN is NP-hard.

Theorem 1.2 (PCP theorem). (1− δ0, 1)-approximating Max-3SAT is NP-hard.

However, you can use a randomized algorithm (and then de-randomize it) to show the
following.

Proposition 1.1. (7/8, 1)-approximating Max-3SAT is easy.

Theorem 1.3 (H̊astad). For all constants δ > 0, (7/8 + δ, 1)-approximating Max-3SAT is
NP-hard.

1You can remember which variable is which by βest and αlgorithm.
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1.2 Testing for dictators vs no notable coordinates

H̊astad’s idea was that to prove hardness for MaxCSP(Ψ), it suffices to design a “relaxed”
dictator test that only uses predicates from Ψ. By relaxed, we mean that it is enough to
make a test which rejects with “decent” probability when f is “very far” from being all
dictators.

Recall that
Inf

(ρ)
i (f) := Stabρ(Fif) =

∑
S3i

ρ|S|−1f̂(S)2.

Qualitatively, we think of this as a “noisy influence.”

Definition 1.6. The total annotated influence is

I(ρ) :=
n∑
i=1

Inf(ρ)o (f)

=
∑
S 6=∅

|S|ρ|S|−1f̂(S)2

=

n∑
k=1

kρk−1W k(f).

Lemma 1.1. For all 0 < ρ < 1 and for all k, kρk−1 ≤ 1
1−ρ .

This tells us that
I(ρ)(f) ≤ ρ

1− ρ
.

Definition 1.7. We sat that a coordinate j is ε-notable if Inf
(1−ε)
j (f) ≥ ε.

Example 1.9. If f = χi, then Inf
(ρ)
i (f) = 1.

Example 1.10. If f = PARITYn = χ[n], then Inf
(ρ)
i (f) = ρn−1.

Even though these are both characters, once we apply noise, χi has influence 1 and the
parity function has exponentially small influence.

Example 1.11. If f is a O(1)-junta, then it has a notable coordinate.

Definition 1.8. An (α, β)-Dictator-vs-No-Notable-Coordinates test using Ψ is a
function tester that for all n ∈ N can be applied to functions f : {±1}n → {±1} and

• makes at most r queries to f and applies a preducate from Ψ.

• If f is a dictator, then P(tester accepts f) ≥ β.

3



• For all small enough ε > 0, if f has no ε-notable coordinates, then

P(tester accepts f) ≤ α+ λ(ε), where λ(ε)
ε→0−−−→ 0.

Theorem 1.4. Suppose there exists an (α, β)-Dictator-vs-No-Notable-Coordinates test us-
ing Ψ. Then for all ε > 0, (α+ε, β−ε)-approximating MaxCSP(Ψ) is Unique-Games-hard.

In other words, there exists a polynomial time reduction so that a YES instance for
the Unique Games problem is mapped to an Instance with Val ≥ β − ε and so that a NO
instance for the Unique Games problem is mapped to an Instance with Val ≤ α+ ε.

Example 1.12. The Unique Games(q, δ) problem is a CSP with domain Ω = {0, 1, . . . , q−
1} and constraints like x7 − x5 ≡ 3 (mod 9) or x5 − x11 ≡ 2 (mod 9). In YES instances,
a 1 − δ fraction of the constraints can be satisfied simultaneously. In a No instance, any
assignment satisfies a ≤ δ fraction of the constraints.

Conjecture 1.1 (Unique games conjecture). For all δ > 0, there exists a q ∈ N such that
UG(q, δ) is NP-hard.

H̊astad made a test based on the idea of BLR lienarity testing.

Theorem 1.5 (H̊astad). For all δ > 0, there is a (1/2, 1 − δ)-Dictator-vs-No-Notable-
Coordinates test using 3LIN equations (such as xi ⊕ xj ⊕ xk ≡ 6 (mod 2)). The test is

• Pick X,Y ∼ {±1}n uniformly at random.

• Pick a bit B ∼ {±1} uniformly at random

• Let Z ∈ {±1}n be defined as Zi = Xi · Yi ·B.

• Take Z ′ ∼ N1−δ(Z)

• Query f(X), f(Y ), f(Z) and accept iff f(X) · f(Y ) · f(Z ′) = B.

In particular,

P(tester accepts f) =
1

2
+

1

2

∑
|S| odd

f̂(S)3(1− δ)|S|.

In F2 notation, the predicate we are checking is a linear equation: F (x)+F (y)+f(z) ≡ 0
(mod 2), where f(x) = (−1)F (x). With z′, this is a noisy linear equation.

Notice that if f = χi is a dictator, then

P(tester accepts) =
1

2
+

1

2
(1− δ) = 1− δ

2
.
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Proof. We want to calculate

P(tester accepts) =
1

2
+

1

2
EX,Y,Z′,B[f(X)f(Y )f(Z ′)B].

Look at

EX,Y,Z′,B[f(X)f(Y )f(Z ′)B | B = 1] = E[f(X)f(Y )EZ′∼N1−δ(X·Y )[f(Z ′)]]

= E[f(X)f( Y︸︷︷︸
X·Z

)T1−δf(X · Y︸ ︷︷ ︸
Z

)]

= EZ [EX [f(X)f(X · Z)]T1−δf(Z)]

= EZ [(f ∗ f)(Z)T1−δf(Z)]

Using Plancherel’s theorem,

=
∑
S

f̂ ∗ f(S)(1− δ)|S|f̂(S)

=
∑
S

f̂(S)3(1− δ)|S|.

The same calculation with B = −1 gives

EX,Y,Z′,B[f(X)f(Y )f(Z ′)B | B = 1] =
∑
S

f̂(S)3(−(1− δ))|S|.

So we get We want to calculate

P(tester accepts) =
1

2
+

1

4

(
E[f(X)f(Y )f(Z ′)B | B = 1] + E[f(X)f(Y )f(Z ′)B | B = −1]

)
=

1

2
+

1

2

∑
S:|S| odd

f̂(S)3(1− δ)|S|.

Now we can check that if ε < δ and f has no ε-notable coordinates, then

P(tester accepts f) =
1

2
+

1

2

∑
S:|S| odd

f̂(S)3(1− δ)|S|

≤ 1

2
+

1

2
max

S:|S| odd
·
∑
S

f̂(S)2

≤ 1

2
+

1

2

√
max

S:|S| odd
f̂(S)2(1− δ)|S|−1

≤ 1

2
+

1

2

√
max
i

Inf
(1−δ)
i (f)

≤ 1

2
+

1

2

√
max
i

Inf
(1−ε)
i (f)

≤ 1

2
+

1

2

√
ε.
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