Computer Science 294 Lecture 20 Notes

Daniel Raban

March 23, 2023

1 Hardness of Approximation

1.1 Constraint statisfaction problems

Definition 1.1. A constraint satisfaction problem (CSP) over domain Ω is defined by a finite set of predicates Ψ where each $\psi \in Psi$ is some constraint $\psi : \Omega^r \to \{0,1\}$. The arity of a CSP is the maximal arity r of a predicate in Ψ .

Example 1.1. Max-3SAT, Max-Cut, Max-3LIN, and Max-3Coloring are al CSPs.

All these problems are NP-hard.

Example 1.2. In Max-3SAT, $\Omega = \{T, F\}$, and a predicate could be something like $\psi(v_1, v_2, v_3) = v_1 \wedge v_2 \wedge v_3$ or $\psi(v_1, v_2, v_3) = \overline{v_1} \wedge v_2 \wedge \overline{v_3}$. The arity is 3.

Definition 1.2. An instance P for MAxCSP(Ψ) over variable set V is a list of tuples: (scope, predicate) $C = (s, \psi)$, where $\psi \in \Psi$ and $s = (v_1, \ldots, v_r)$ is a typle of variables in V.

Definition 1.3. An assignment for an instance P is a labeling $F: V \to \Omega$. F satisfies a constraint (s, ψ) if $\psi(F(s)) = 1$, where $F(s) = (F(v_1), \dots, F(v_r))$.

Definition 1.4. The value pf F on P, is the fraction of constraints in P satisfied by F. That is,

$$\operatorname{Val}_p(F) = \mathbb{E}_{(S,\psi) \sim P}[\psi(F(S))].$$

The optimal value is

$$OPT(P) := \max_{F} Val_{P}(F).$$

Last time, we discussed string testers. The main insight is that CSPs are the same as string testers. Here is a dictionary between CSPs and string testing.

CSP instance P	string tester
Assignment $F:[n] \to \Omega$	$\omega \in \Omega^n$
Value of F	$\mathbb{P}(\text{tester accepts }\omega)$
Ψ	predicates you apply in the string tester
number of constraints	2 [#] random bits

Example 1.3. Take Max-3SAT, for example. We think of the string as an assignment to all the variables. Our queries ask for the value of 3 bits in the string, and the predicates are the predicates of the DNF, things like $x_1 \wedge \overline{x_2} \wedge x_3$.

Definition 1.5. An (α, β) -approximation algorithm for MaxxCSP(Ψ) is an algorithm that on instances where whose best assignment has value $\geq \beta$, the algorithm is guaranteed to output and assignment with value $\geq \alpha$.

Example 1.4. (1,1) approximating Max-Cut is easy because this is the case where the graph is bipartite.

Example 1.5. (1/2, 0.51) approximating Max-Cut is easy because if we randomly cut each edge with probability 1/2, we will cut half the edges on average.

Example 1.6. (1, 1)-approximating MaxSAT is NP-hard because if we can find a satisfying assignment for any formula which can be satisfied, then we can solve 3SAT.

Example 1.7. (1,1)-approximating MaxColoring is NP-hard because solving this problem would allow us to solve 3Coloring.

Example 1.8. (1,1)-approximating Max-3LIN is easy because we can just use Gaussian elimination to see whether a system of linear equations has a solution.

However, the following theorem tells us that Gaussian elimination is not robust for solving this CSP.

Theorem 1.1 (Håstad). (0.51, 0.99)-approximating Max-3LIN is NP-hard.

Theorem 1.2 (PCP theorem). $(1 - \delta_0, 1)$ -approximating Max-3SAT is NP-hard.

However, you can use a randomized algorithm (and then de-randomize it) to show the following.

Proposition 1.1. (7/8, 1)-approximating Max-3SAT is easy.

Theorem 1.3 (Håstad). For all constants $\delta > 0$, $(7/8 + \delta, 1)$ -approximating Max-3SAT is NP-hard.

¹You can remember which variable is which by β est and α lgorithm.

1.2 Testing for dictators vs no notable coordinates

Håstad's idea was that to prove hardness for $\text{MaxCSP}(\Psi)$, it suffices to design a "relaxed" dictator test that only uses predicates from Ψ . By relaxed, we mean that it is enough to make a test which rejects with "decent" probability when f is "very far" from being all dictators.

Recall that

$$\operatorname{Inf}_{i}^{(\rho)}(f) := \operatorname{Stab}_{\rho}(F_{i}f) = \sum_{S \supset i} \rho^{|S|-1} \widehat{f}(S)^{2}.$$

Qualitatively, we think of this as a "noisy influence."

Definition 1.6. The total annotated influence is

$$\mathbb{I}^{(\rho)} := \sum_{i=1}^{n} \operatorname{Inf}_{o}^{(\rho)}(f)$$
$$= \sum_{S \neq \varnothing} |S| \rho^{|S|-1} \widehat{f}(S)^{2}$$
$$= \sum_{k=1}^{n} k \rho^{k-1} W^{k}(f).$$

Lemma 1.1. For all $0 < \rho < 1$ and for all $k, k\rho^{k-1} \le \frac{1}{1-\rho}$.

This tells us that

$$\mathbb{I}^{(\rho)}(f) \le \frac{\rho}{1-\rho}.$$

Definition 1.7. We sat that a coordinate j is ε -notable if $\operatorname{Inf}_{j}^{(1-\varepsilon)}(f) \geq \varepsilon$.

Example 1.9. If $f = \chi_i$, then $\operatorname{Inf}_i^{(\rho)}(f) = 1$.

Example 1.10. If
$$f = PARITY_n = \chi_{[n]}$$
, then $Inf_i^{(\rho)}(f) = \rho^{n-1}$.

Even though these are both characters, once we apply noise, χ_i has influence 1 and the parity function has exponentially small influence.

Example 1.11. If f is a O(1)-junta, then it has a notable coordinate.

Definition 1.8. An (α, β) -Dictator-vs-No-Notable-Coordinates test using Ψ is a function tester that for all $n \in \mathbb{N}$ can be applied to functions $f : \{\pm 1\}^n \to \{\pm 1\}$ and

- makes at most r queries to f and applies a preducate from Ψ .
- If f is a dictator, then $\mathbb{P}(\text{tester accepts } f) \geq \beta$.

• For all small enough $\varepsilon > 0$, if f has no ε -notable coordinates, then

$$\mathbb{P}(\text{tester accepts } f) \leq \alpha + \lambda(\varepsilon), \quad \text{where } \lambda(\varepsilon) \xrightarrow{\varepsilon \to 0} 0.$$

Theorem 1.4. Suppose there exists an (α, β) -Dictator-vs-No-Notable-Coordinates test using Ψ . Then for all $\varepsilon > 0$, $(\alpha + \varepsilon, \beta - \varepsilon)$ -approximating MaxCSP(Ψ) is Unique-Games-hard. In other words, there exists a polynomial time reduction so that a YES instance for the Unique Games problem is mapped to an Instance with Val $\geq \beta - \varepsilon$ and so that a NO instance for the Unique Games problem is mapped to an Instance with Val $\leq \alpha + \varepsilon$.

Example 1.12. The **Unique Games** (q, δ) **problem** is a CSP with domain $\Omega = \{0, 1, \dots, q-1\}$ and constraints like $x_7 - x_5 \equiv 3 \pmod{9}$ or $x_5 - x_{11} \equiv 2 \pmod{9}$. In YES instances, a $1 - \delta$ fraction of the constraints can be satisfied simultaneously. In a No instance, any assignment satisfies a $\leq \delta$ fraction of the constraints.

Conjecture 1.1 (Unique games conjecture). For all $\delta > 0$, there exists a $q \in \mathbb{N}$ such that $UG(q, \delta)$ is NP-hard.

Håstad made a test based on the idea of BLR lienarity testing.

Theorem 1.5 (Håstad). For all $\delta > 0$, there is a $(1/2, 1 - \delta)$ -Dictator-vs-No-Notable-Coordinates test using 3LIN equations (such as $x_i \oplus x_j \oplus x_k \equiv 6 \pmod{2}$). The test is

- Pick $X, Y \sim \{\pm 1\}^n$ uniformly at random.
- Pick a bit $B \sim \{\pm 1\}$ uniformly at random
- Let $Z \in \{\pm 1\}^n$ be defined as $Z_i = X_i \cdot Y_i \cdot B$.
- Take $Z' \sim N_{1-\delta}(Z)$
- Query f(X), f(Y), f(Z) and accept iff $f(X) \cdot f(Y) \cdot f(Z') = B$.

In particular,

$$\mathbb{P}(tester\ accepts\ f) = \frac{1}{2} + \frac{1}{2} \sum_{|S|\ odd} \widehat{f}(S)^3 (1 - \delta)^{|S|}.$$

In \mathbb{F}_2 notation, the predicate we are checking is a linear equation: $F(x)+F(y)+f(z)\equiv 0 \pmod{2}$, where $f(x)=(-1)^{F(x)}$. With z', this is a noisy linear equation.

Notice that if $f = \chi_i$ is a dictator, then

$$\mathbb{P}(\text{tester accepts}) = \frac{1}{2} + \frac{1}{2}(1 - \delta) = 1 - \frac{\delta}{2}.$$

Proof. We want to calculate

$$\mathbb{P}(\text{tester accepts}) = \frac{1}{2} + \frac{1}{2} \mathbb{E}_{X,Y,Z',B}[f(X)f(Y)f(Z')B].$$

Look at

$$\mathbb{E}_{X,Y,Z',B}[f(X)f(Y)f(Z')B \mid B=1] = \mathbb{E}[f(X)f(Y)\mathbb{E}_{Z'\sim N_{1-\delta}(X\cdot Y)}[f(Z')]]$$

$$= \mathbb{E}[f(X)f(\underbrace{Y}_{X\cdot Z})T_{1-\delta}f(\underbrace{X\cdot Y}_{Z})]$$

$$= \mathbb{E}_{Z}[\mathbb{E}_{X}[f(X)f(X\cdot Z)]T_{1-\delta}f(Z)]$$

$$= \mathbb{E}_{Z}[(f*f)(Z)T_{1-\delta}f(Z)]$$

Using Plancherel's theorem,

$$= \sum_{S} \widehat{f * f}(S) (1 - \delta)^{|S|} \widehat{f}(S)$$
$$= \sum_{S} \widehat{f}(S)^{3} (1 - \delta)^{|S|}.$$

The same calculation with B = -1 gives

$$\mathbb{E}_{X,Y,Z',B}[f(X)f(Y)f(Z')B \mid B=1] = \sum_{S} \widehat{f}(S)^{3} (-(1-\delta))^{|S|}.$$

So we get We want to calculate

$$\mathbb{P}(\text{tester accepts}) = \frac{1}{2} + \frac{1}{4} \left(\mathbb{E}[f(X)f(Y)f(Z')B \mid B = 1] + \mathbb{E}[f(X)f(Y)f(Z')B \mid B = -1] \right)$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S:|S| \text{ odd}} \widehat{f}(S)^3 (1 - \delta)^{|S|}.$$

Now we can check that if $\varepsilon < \delta$ and f has no ε -notable coordinates, then

$$\begin{split} \mathbb{P}(\text{tester accepts } f) &= \frac{1}{2} + \frac{1}{2} \sum_{S:|S| \text{ odd}} \widehat{f}(S)^3 (1-\delta)^{|S|} \\ &\leq \frac{1}{2} + \frac{1}{2} \max_{S:|S| \text{ odd}} \cdot \sum_{S} \widehat{f}(S)^2 \\ &\leq \frac{1}{2} + \frac{1}{2} \sqrt{\max_{S:|S| \text{ odd}} \widehat{f}(S)^2 (1-\delta)^{|S|-1}} \\ &\leq \frac{1}{2} + \frac{1}{2} \sqrt{\max_{i} \text{Inf}_i^{(1-\delta)}(f)} \\ &\leq \frac{1}{2} + \frac{1}{2} \sqrt{\max_{i} \text{Inf}_i^{(1-\varepsilon)}(f)} \\ &\leq \frac{1}{2} + \frac{1}{2} \sqrt{\varepsilon}. \end{split}$$