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1 Hardness of Approximation

1.1 Constraint statisfaction problems

Definition 1.1. A constraint satisfaction problem (CSP) over domain § is defined
by a finite set of predicates ¥ where each ¢ € Psi is some constraint ¢ : Q" — {0,1}. The
arity of a CSP is the maximal arity r of a predicate in W.

Example 1.1. Max-3SAT, Max-Cut, Max-3LIN, and Max-3Coloring are al CSPs.
All these problems are NP-hard.

Example 1.2. In Max-3SAT, Q@ = {T,F}, and a predicate could be something like
P(v1,v2,v3) = v1 A vy Avs or (v, ve,v3) =01 Ave Avz. The arity is 3.

Definition 1.2. An instance P for MAxCSP (V) over variable set V' is a list of tuples:
(scope, predicate) C = (s,v), where ¢ € ¥ and s = (v1,...,v,) is a typle of variables in
V.

Definition 1.3. An assignment for an instance P is a labeling F': V — Q. F satisfies
a constraint (s,) if ¢(F(s)) = 1, where F(s) = (F(v1),..., F(v.)).

Definition 1.4. The value pf F' on P, is the fraction of constraints in P satisfied by F'.
That is,
Valy,(F) = E(s,p)~p [ (F(5))].

The optimal value is
OPT(P) := m}f}XValp(F).

Last time, we discussed string testers. The main insight is that CSPs are the same as
string testers. Here is a dictionary between CSPs and string testing.



CSP instance P string tester

Assignment F : [n] — Q weQr
Value of F P(tester accepts w)
)\ predicates you apply in the string tester

number of constraints o7 random bits

Example 1.3. Take Max-3SAT, for example. We think of the string as an assignment to
all the variables. Our queries ask for the value of 3 bits in the string, and the predicates
are the predicates of the DNF, things like z1 A T3 A x3.

Definition 1.5. An (a, §)-approximation algorithm for MaxxCSP(WV) is an algorithm
that on instances where whose best assignment has value > 3, the algorithm is guaranteed
to output and assignment with value > a.!

Example 1.4. (1,1) approximating Max-Cut is easy because this is the case where the
graph is bipartite.

Example 1.5. (1/2,0.51) approximating Max-Cut is easy because if we randomly cut each
edge with probability 1/2, we will cut half the edges on average.

Example 1.6. (1, 1)-approximating MaxSAT is NP-hard because if we can find a satisfying
assignment for any formula which can be satisfied, then we can solve 3SAT.

Example 1.7. (1, 1)-approximating MaxColoring is NP-hard because solving this problem
would allow us to solve 3Coloring.

Example 1.8. (1,1)-approximating Max-3LIN is easy because because we can just use
Gaussian elimination to see whether a system of linear equations has a solution.

However, the following theorem tells us that Gaussian elimination is not robust for
solving this CSP.

Theorem 1.1 (Hastad). (0.51,0.99)-approzimating Max-3LIN is NP-hard.
Theorem 1.2 (PCP theorem). (1 — &g, 1)-approzimating Maz-3SAT is NP-hard.

However, you can use a randomized algorithm (and then de-randomize it) to show the
following.

Proposition 1.1. (7/8,1)-approzimating Maz-3SAT is easy.

Theorem 1.3 (Hastad). For all constants 6 > 0, (7/8 + 6, 1)-approzimating Max-3SAT is
NP-hard.

“You can remember which variable is which by Best and algorithm.



1.2 Testing for dictators vs no notable coordinates

Hastad’s idea was that to prove hardness for MaxCSP (), it suffices to design a “relaxed”
dictator test that only uses predicates from ¥. By relaxed, we mean that it is enough to
make a test which rejects with “decent” probability when f is “very far” from being all
dictators.
Recall that R
Infl” (f) := Stab,(F:f) = > o571 ()2

S3i

Qualitatively, we think of this as a “noisy influence.”

Definition 1.6. The total annotated influence is
1) =Y " Infl)(f)
=1
= > ISIpI71f(9)?

S#w

= > kpFTIWE(S).
k=1

Lemma 1.1. For all 0 < p < 1 and for all k, kpF~' < ﬁ—p.

This tells us that P
10 () < L
<

Definition 1.7. We sat that a coordinate j is e-notable if Infgl_s)(f) >e.

Example 1.9. If f = y;, then Infgp)(f) =1.
Example 1.10. If f = PARITY,, = xj,, then Infz(.p)(f) =L

Even though these are both characters, once we apply noise, x; has influence 1 and the
parity function has exponentially small influence.

Example 1.11. If f is a O(1)-junta, then it has a notable coordinate.

Definition 1.8. An («, §)-Dictator-vs-No-Notable-Coordinates test using ¥ is a
function tester that for all n € N can be applied to functions f: {£1}" — {£1} and

e makes at most r queries to f and applies a preducate from W.

o If f is a dictator, then P(tester accepts f) > f.



e For all small enough € > 0, if f has no e-notable coordinates, then

e—0

P(tester accepts f) < a + A(e), where A(g) —— 0.

Theorem 1.4. Suppose there ezists an (o, B)-Dictator-vs-No-Notable-Coordinates test us-
ing W. Then for alle > 0, (a+¢, 8—e¢)-approzimating MaxCSP (V) is Unique-Games-hard.
In other words, there exists a polynomial time reduction so that a YES instance for
the Unique Games problem is mapped to an Instance with Val > B — e and so that a NO
instance for the Unique Games problem is mapped to an Instance with Val < o + €.

Example 1.12. The Unique Games(q, ) problem is a CSP with domain Q = {0,1,...,g—
1} and constraints like 27 — 25 = 3 (mod 9) or x5 — z11 = 2 (mod 9). In YES instances,

a 1 — ¢§ fraction of the constraints can be satisfied simultaneously. In a No instance, any
assignment satisfies a < ¢ fraction of the constraints.

Conjecture 1.1 (Unique games conjecture). For all 6 > 0, there exists a ¢ € N such that
UG(q,0) is NP-hard.

Hastad made a test based on the idea of BLR lienarity testing.

Theorem 1.5 (Hastad). For all 6 > 0, there is a (1/2,1 — §)-Dictator-vs-No-Notable-
Coordinates test using 3LIN equations (such as x; ® xj ® x =6 (mod 2)). The test is

e Pick X, Y ~ {£1}" uniformly at random.

e Pick a bit B ~ {£1} uniformly at random

o Let Z € {£1}" be defined as Z; = X;-Y; - B.

e Take Z' ~ N1_s(Z)

e Query F(X), f(Y), f(Z) and accept iff f(X)- F(Y) - }(Z) = B.

In particular,

P(tester accepts f) = = —|— = Z f 3(1-9) 181,
|S'| odd

In [F notation, the predicate we are checking is a linear equation: F(z)+F(y)+f(z) =
(mod 2), where f(z) = (—1)F®), With 2/, this is a noisy linear equation.
Notice that if f = x; is a dictator, then
4]

1 1
P(tester accepts) = B + 5(1 -9 =1- 7



Proof. We want to calculate

P(tester accepts) = % + %EX,Y,Z’,B[f(X)f(Y)f(Z/)B]'

Look at

Exyz plf(X)f(Y)f(Z")B | B =1] = E[f(X)f(Y)Ezn,_sxv)[f(Z)]
=E[f(X) Q)T (X V)]
Xz e
=Ez[Ex[f(X)f(X - 2)|Th-sf(2)]
Ez[(f = ) 2)T1-sf(Z)]

Using Plancherel’s theorem,

—

=" FxF(S) A - o) f(S)

S
=D &9
S
The same calculation with B = —1 gives
EX,Y,Z’,B[f(X)f(Y)f(Z/ B ‘ B = ]_ = Z ]_ _ 5 )|S|

S
So we get We want to calculate

P(tester accepts) = E + i (E[f(X)f(Y)f( "B|B=1]+E[f(X)fY)f(Z)B|B=-1])

2

1

- 5)I5!,
=5+5 > s

s S| odd

Now we can check that if £ < § and f has no e-notable coordinates, then

P(tester accepts f) = % + % Z f(5)3(1 _ 5)|5\

1 =
_ S)2(1 =4 |S|—1
+ s:]f??fddf( )2 ( )
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